

A Liquid Photoinitiators Blend for Pigmented UV Inks System

- Presentation for Radtech 2020 -

James B. Gacek
EVP of North & Latin America

March 10, 2020

Status of PI-907 & 369

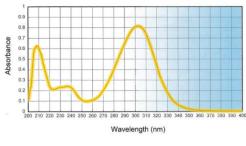
Substance name ©	expand / collapse	EC No.	CAS No. 0	Date of inclusion	Reason for inclusion	Decision	IUCLID dataset	
2-methyl-1-(4-methylthiophenyl)-2- morpholinopropan-1-one	PI-907	400-600-6	71868-10-5	16/01/2020	Toxic for reproduction (Article 57c)	ECHA_01_2020.pdf	•	•
2-benzyl-2-dimethylamino-4'- morpholinobutyrophenone	PI-369	404-360-3	119313-12- 1	16/01/2020	Toxic for reproduction (Article 57c)	ECHA_01_2020.pdf	• •	•

ECHA website link: https://echa.europa.eu/candidate-list-table

■ Both PI-907 and 369 are put into SVHC list in 2020 Jan, due to **reprotox. 1B** toxicity.

Approaches to Improve the Toxicity of Aminoketone PIs

For decades, Chitec has kept doing researches in developing a new generation aminoketone photoinitiators through approaches of:

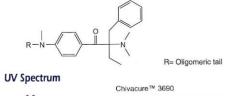

- 1. Oligomerized structure to enlarge the molecular weight
- 2. Modification of Structure or functional group
- 3. Functional blend to achieve similar performance

Oligomerized Liquid Aminoketone Photoinitiators

Chivacure® 3482 (2003)

n= 3 on average

UV Spectrum


- Amber viscous liquid
- Molecular weight: ca. 700
- λmax= 303nm

R-gen 2010 (2012)

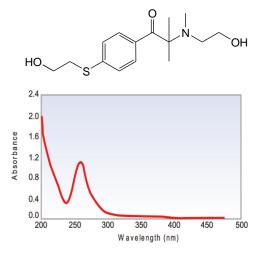
Wavelength (nm)

- Yellow to amber syrup
- Molecular weight: ca. 1500
- λmax= 296nm

Chivacure® 3690 (2006)

- Chivacure™ 3690

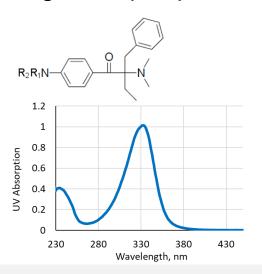
 0.8
 0.7
 0.6
 0.5
 0.4
 0.4
 0.2
 0.1
 0.7
 275 290 305 320 335 350 365 380 395


 Wavelength (nm)
- · brownish viscous liquid
- Molecular weight: ca. 750
- λmax= 312nm

But they never became accepted in the industry.....

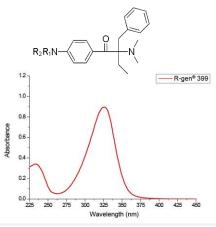
Oligomeric structures are proven to reduce aminoketone PI's photo-speed significantly which requires a higher dosage requirement and higher cost.

New Molecular Designs of Aminoketone Photoinitiator


R-gen® 7W (2010)

- White crystalline powder
- Molecular weight: 297.41
- λmax= 257nm

Mass production issue.....

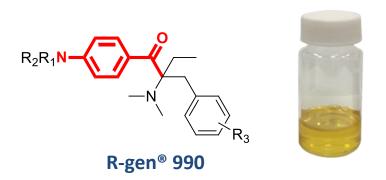

R-gen® 919 (2014)

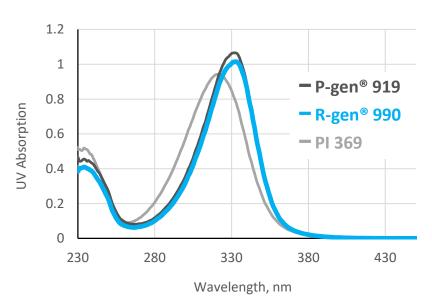
- Brownish viscous liquid
- λmax= 332nm

R-gen® 399 (2013)

- Brownish viscous liquid
- λmax= 326nm

Odor after curing...


Dark color


- In 2014, Chitec introduced R-gen® 919, which has excellent photo-curing performances, and no odor after curing, but suffered from dark color and higher acute toxicity issue.
- Though existed above two drawbacks, R-gen® 919 is still a good choice in photoresist and inkjet ink applications.

R-gen® 990* – A Novel Liquid Aminoketone Pl

R-gen® 990 (2018)

	R-gen® 990	R-gen® 919
Appearance	Light yellow viscus liquid	Dark brown viscus liquid
Photoactivity	High	High
Purity, %	~98%	~92%
Acute toxicity	LD ₅₀ > 5,000 mg/kg	LD ₅₀ = 1,000 mg/kg
Odor	Odorless	Slight ester odor

Concentration: 10 ppm in CH_2Cl_2

*WO patent pending

Photoactivity Evaluation of R-gen® 990

	LED 3651	nm (4W)	LED 395nm (8W)		
	Surface Cure	Full Cure	Surface Cure	Full Cure	
PI 369	1	2-3	1	2	
R-gen® 919	1	2	1	2-3	
R-gen® 990	1	2	1	2-3	
TPO	2	3	1-2	3	

Times for achieving full curing

Conditions:

- System: Flexo black ink (Epoxy/ PU acrylate)
- PI System: aminoketone PI 4%, DETX 2%
- Carbon black: 10%, MA-100 grade
- Film thickness: 12 μm
- Substrate: PET
- UV source: LED UV, 365 & 395 nm, 40 m/min

■ Photospeed in High Carbon black Loading Ink

	Dosago	UV Curing Times						
	Dosage	1	2	3	4	5	6	
	4%	Х	Χ	Χ	Χ	Δ	0	
PI-169	8%	Over-saturation						
	4%	Χ	Χ	Χ	Δ	0		
R-gen® 990	8%	Δ	Δ	O				
	12%	0						

Times for achieving full curing

X: tack surface

Δ: surface cure without physical property

O: full cure

Conditions:

- System: Flexo black ink (Epoxy/ polyester acrylate)
- PI System: aminoketone PI with, DETX 2%
- Carbon black: 20%, high color black
- Film thickness: 6 mm
- Substrate: PET
- UV source: LED UV, 4W, 365, 20 m/min

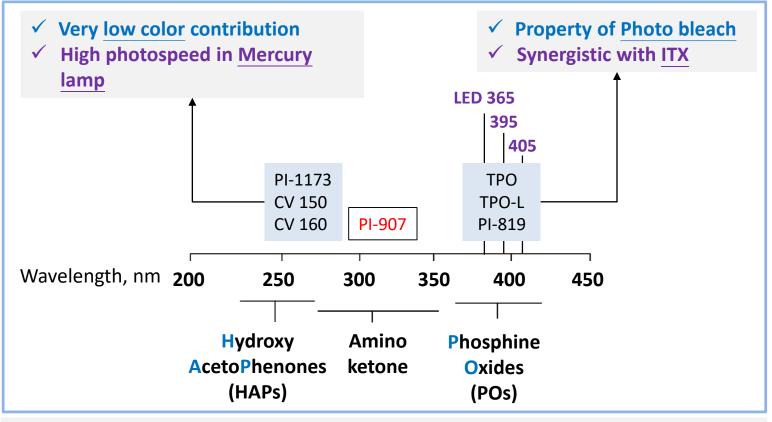
R-gen® 990 Status

Structure

$$R_2R_1N$$
 $-N$
 R_3

Chemical family CAS No.

Aminoketone Proprietary


- The OECD 407 (repeated dose 28-day oral toxicity study) results showed R-gen® 990 performed similar as Irgacure® 369 at the same dosage at 100mg/kg.
- OECD 421 (reproduction and developmental toxicity screening test) or OECD 414 (prenatal developmental toxicity test), are not considered at the priority further as no improvement found during OECD 407 test.

Summary of Pros and Cons of PI-907

PI-907							
Pros	Cons						
Excellent photospeed	SVHC						
Colorless → Suitable for clear coating	Strong odor after curing						
Synergistic with ITX → Suitable for pigmented coating							
Good Solubility							
Good Price							

Candidates of Liquid Photoinitiator Blend

PI	Structure
PI-1173	ОН
Chivacure® 150 (CV150)	H ₃ CH ₃ CH ₃ OH CH ₃
Chivacure® 160 (CV160)	но
Chivacure® TPO	
Chivacure® TPO-L (TPOL)	O O O O O O O O O O O O O O O O O O O
PI-819	
	PI-1173 Chivacure® 150 (CV150) Chivacure® 160 (CV160) Chivacure® TPO Chivacure® TPO-L (TPOL)

- To fulfill the requirements of PI-907 replacement, the combinations of HAP dimer and TPOL have high potential:
- ✓ Low color contribution
- ✓ Wide range photoactivity
- **✓** Consideration of substance regulations

** BAPO= bis-acyl PO

Liquid Photoinitiator Blends

		Liquid functional Blend	Ratio	Concerns
Target system	Aminoketone	PI-907		SVHC
Reference system	HAP+MAPO	PI-1173/ TPO	1/1	PIs are in the Nestle exclusion list
Reference system	HAP+MAPO	PI-1173/ TPO-L	1/1	1173 is in the Nestle exclusion list
	HAP dimer + MAPO	EXP407	CV160/ TPO-L Proprietary	
	HAP dimer + MAPO	EXP507	CV150/ TPO-L Proprietary	
Reference system	MAPO + BAPO	TPO-L/ PI-819	91/9	Oxygen inhibition

■ The ratio of liquid blend are designed depending on compatibilities between photoinitiators.

Photospeed Evaluation on Black Inks – LED UV

907

Photospeed,

M/min

LED UV

■ Black Ink conditions:

	Parts
Mixture of epoxy acrylate and urethane acrylate, F=3.5	57
HDDA	38
Carbon black (middle color black)	5
Test PI/ 2-ITX	6%/ 1%

		35M			
		30M			
Energy	365	25M			
increase	4W	20M			
		15M			
		10M			
		35M			
		30M			
Energy	395	25M			
increase	4W	20M			
		15M			
		10M			

1/1

1173/TPO= 1173/TPOL

= 1/1

EXP407

EXP507

dry film thickness= 9um

Substrate: PET

• Height of LED UV= 1cm

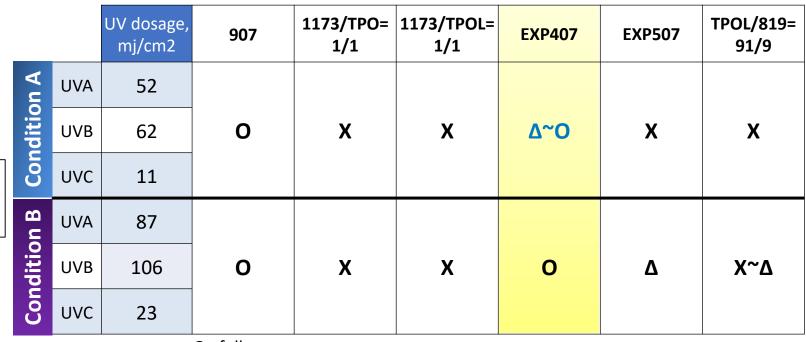
■ Under LED UV curing condition, photospeed of EXP407 and EXP507 are close to PI-907.

TPOL/819=

91/9

Photospeed Evaluation on Black Inks – Mercury Lamp

□ Black Ink conditions:


	Parts
Mixture of epoxy acrylate and urethane acrylate, F=3.5	57
HDDA	38
Carbon black (middle color black)	5
Test PI/ 2-ITX	6%/ 1%

Energy increase

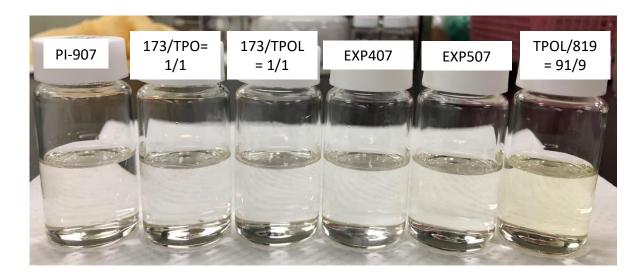
Substrate: PET

 Mercury Medium Pressure UV Lamp

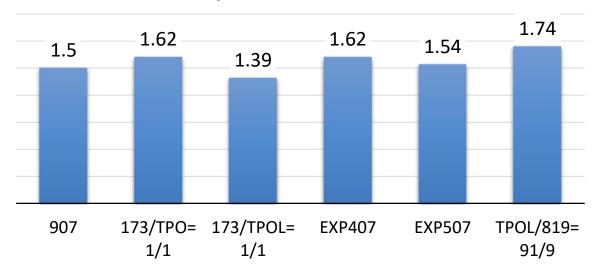
O= full cure

 Δ = surface tacky

X= wet film

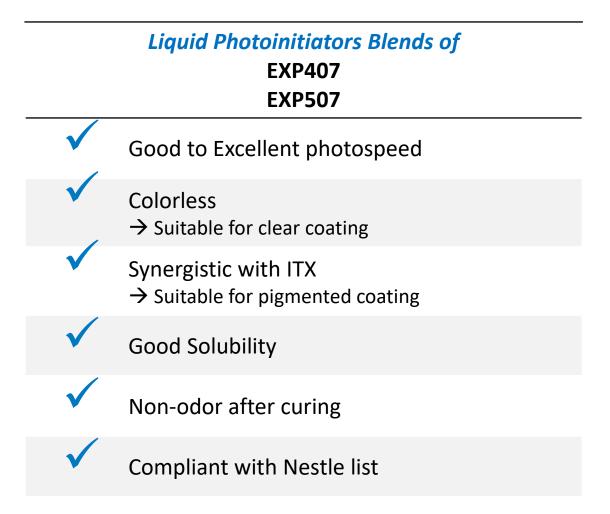

■ Under curing condition of mercury medium pressure UV lamp, the EXP407 shows outstanding photospeed compared to other liquid blend systems.

Color of Liquid Photoinitiator Blends


UV Varnish

	Parts
Mixture of epoxy acrylate and urethane acrylate, F=3.5	96%
Test PI	4%

- dry film thickness= 9um
- Substrate: PET
- LED 365nm



Dry film Yellowness, YI

■ Due to photo-bleaching property, all liquid blends showed low initial color contribution as good as PI-907. Only TPO-L/819 blend has slightly higher yellowness.

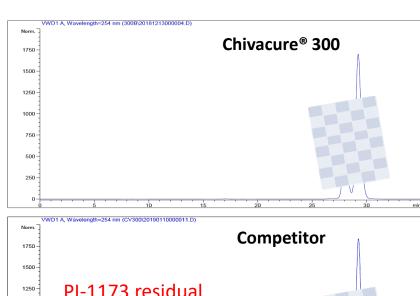
Two High Potential Liquid Photoinitiator Blends

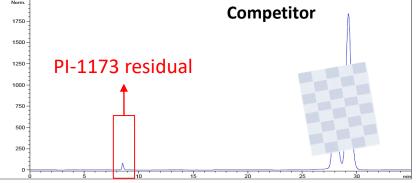
Why Chitec?

Chivacure® TPO-L

produced by a proprietary process preventing the release of the ozonedepleting agent chloroethane into the air.

Chivacure® 160


> Excellent initial color



Chivacure® 150/300

➤ No PI-1173 residual

We pursue difference, not number.

